Пояснительная записка Общая характеристика учебного предмета, курса «Русский язык»



Сторінка15/21
Дата конвертації16.04.2016
Розмір4.61 Mb.
1   ...   11   12   13   14   15   16   17   18   ...   21

Геометрия 7-9 классы (210 ч)




Основное содержание по темам

Характеристика основных видов деятельности ученика (на уровне учебных действий)

1

2

1. Прямые и углы (15 ч)

Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.Геометрическое место точек. Метод геометрических мест точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Формулировать определения и иллюстрировать понятия отрезка, луча; угла, прямого, острого, тупого и развернутого углов; вертикальных и смежных углов; биссектрисы угла. Формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; перпендикулярных прямых; перпендикуляра и наклонной к прямой; серединного перпендикуляра к отрезку; распознавать и изображать их на чертежах и рисунках. Объяснять, что такое геометрическое место точек, приводить примеры геометрических мест точек. Формулировать аксиому параллельных прямых. Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопоставлять полученный результат с условием задачи.

2. Треугольники (65 ч)

Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.

Формулировать определения прямоугольного, остроугольного, тупоугольного, равнобедренного, равностороннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изображать их на чертежах и рисунках. Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках равенства треугольников. Объяснять и иллюстрировать неравенство треугольника. Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника.

Формулировать определение подобных треугольников. Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса.Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора. Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функцииострых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла. Формулировать и доказывать теоремы синусов и косинусов. Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений.

Исследовать свойства треугольника с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения. Интерпретировать полученный результат и сопоставлять его с условием задачи.

3. Четырехугольники (20 ч)

Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки. Прямоугольник, теорема о равенстве диагоналей прямоугольника. Ромб, теорема о свойстве диагоналей. Квадрат.Трапеция, средняя линия трапеции; равнобедренная трапеция

Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках. Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции. Исследовать свойства четырехугольников с помощью компьютерных программ. Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи.

4. Многоугольники (10 ч)

Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника

Распознавать многоугольники, формулировать определение и приводить примеры многоугольников. Формулировать и доказывать теорему о сумме углов выпуклого многоугольника. Исследовать свойства многоугольников с помощью компьютерных программ. Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи.

5. Окружность и круг (20 ч)

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства.Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника. Вписанные и описанные окружности правильного многоугольника. Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью. Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью. Изображать, распознавать и описывать взаимное расположение прямой и окружности.

Изображать и формулировать определения вписанных и описанных многоугольников и треугольников; окружности, вписанной в треугольник, и окружности, описанной около треугольника. Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника. Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи.

6. Геометрические преобразования (10 ч)

Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии

Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот. Исследовать свойства движений с помощью компьютерных программ. Выполнять проекты по темам геометрических преобразований на плоскости.

7. Построение с помощью циркуля и линейки (5 ч)

Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей.

Решать задачи на построение с помощью циркуля и линейки. Находить условия существования решения, выполнять построение точек, необходимых для построения искомой фигуры. Доказывать, что построенная фигура удовлетворяет условиям задачи.

8. Измерение геометрических величин (25 ч)

Длина отрезка. Длина ломаной. Периметр многоугольника. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число к; длина дуги окружности. Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.



Объяснять и иллюстрировать понятие периметра многоугольника. Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми. Формулировать и объяснять свойства длины, градусной меры угла, площади. Формулировать соответствие между величиной центрального угла и длиной дуги окружности. Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур. Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга. Находить площадь многоугольника разбиением на треугольники и четырехугольники. Объяснять и иллюстрировать отношение площадей подобных фигур. Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе реше ния. Интерпретировать полученный результат и сопоставлять его с условием задачи.

9. Координаты (10 ч)

Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности

Объяснять и иллюстрировать понятие декартовой системы координат. Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности.

Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства.

10. Векторы (10 ч)

Вектор. Длина вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение векторов.

Формулировать определения и иллюстрировать понятия вектора, длины вектора, коллинеарных векторов, равных векторов. Вычислять длину и координаты вектора. Находить угол между векторами. Выполнять операции над векторами. Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства.

11.Элементы логики (5 ч)

Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы.

Резерв времени 15 ч
1   ...   11   12   13   14   15   16   17   18   ...   21


База даних захищена авторським правом ©shag.com.ua 2016
звернутися до адміністрації

    Головна сторінка