Інформаційні системи І технології в юридичній діяльності / денісова о. О



Сторінка3/4
Дата конвертації15.04.2016
Розмір0.7 Mb.
1   2   3   4

1.8. Правові експертні системи

Експертні системи належать до класу інтелектуальних систем (систем штучного інтелекту), які виконують операції, імітуючи інтелектуальну діяльність людини — дії та розумові висновки людей у нестандартних ситуаціях, коли схема, алгоритм розв’язування задачі, що постала перед фахівцем, апріорі невідомі. Інтелектуальні системи забезпечують розв’язування неформалізованих задач користувача в деякій предметній галузі та організовують його взаємодію з комп’ютером у звичних поняттях, термінах, образах. Отже, можна подати таке визначення.

Експертна система — це інтелектуальна система, призначена для розв’язування задач у певній предметній галузі на основі знань, наданих експертами, яка містить базу знань і підтримує функції обґрунтування, пояснення та виправдання.

Застосовуються також такі терміни:

система на основі знань — інтелектуальна система, в якій знання про предметну галузь подано в явному вигляді та відокремлено від інших знань системи;

дорадча система — інтелектуальна система, що забезпечує формування рекомендацій про послідовність і перелік можливих дій користувача у процесі розв’язування задачі.

Основною відмінністю інтелектуальних систем від інших є те, що в них об’єктом нагромадження, зберігання, оброблення, передавання та використання є не дані, а знання. Знання — це сукупність фактів, закономірностей, відношень та евристичних правил, що відбиває рівень обізнаності з проблемами деяких предметних галузей. Специфічні особливості знань, що дають змогу відрізнити їх від даних, такі: внутрішня інтерпретація, наявність ситуативних зв’язків, активність і форма подання.

Згідно з різними підходами виокремлюють такі типи знань:

декларативні (предметні) знання — факти (тобто класи об’єктів і зв’язки між ними), які можна подати у вигляді множини тверджень, що не залежать від того, де і коли такі знання використовуються;

процедурні знання (правила) — описи процедур, за допомогою яких ці знання можна здобути. У разі процедурного подання знань немає потреби зберігати інформацію про всі можливі стани предметної галузі, як тоді, коли використовуються декларативні знання, — достатньо мати опис початкового стану та процедур, що генерують на його основі потрібні наступні стани;

евристичні знання — знання, які акумулюють неформальний досвід розв’язування задач у деякій предметній галузі;

семантичні знання — знання про стан об’єктів предметної галузі та відношення між ними;

прагматичні знання — знання про способи розв’язування задач у предметній галузі;

каузальні знання — знання, в основу яких покладено причинно-наслідкові зв’язки.

Знання на відміну від даних, що відбивають кількісні характеристики і подаються здебільшого в цифровому вигляді, містять якісні характеристики у вигляді текстової інформації. Це також становить одну з відмінностей ЕС від систем оброблення даних. Відповідно, користувач ЕС одержує в результаті її роботи не документ у табличному вигляді, а інтелектуальну пораду у формі тексту.

Специфіка функціонування ЕС та інформаційного об’єкта для оброблення зумовлює особливості архітектури такої системи. У загальному випадку вона складається з розглянутих далі восьми блоків.

База знань — упорядкована сукупність правил, фактів, механізмів виведення та програмних засобів, що описує деяку предметну галузь та призначена для подання нагромаджених у ній знань. У базі знань мають бути присутні як загальновідомі факти, явища, закономірності, що визнані в даній предметній галузі й опубліковані (знання 1-го роду), так і набір емпіричних правил та інтуїтивних висновків, якими користуються спеціалісти, приймаючи рішення в умовах невизначеності за наявності неповної суперечливої інформації, і які найчастіше не опубліковані (знання 2-го роду). Очевидно, що результатом роботи розробника ЕС — фахівця з ІТ, є порожня ЕС, в якій база знань не заповнена. Заповнює базу знань експерт — знавець предметної галузі — згідно з вибраною моделлю подання знань.

До основних моделей подання знань (моделей знань), що являють собою сукупності правил подання, опису та породження знань у базі знань, належать такі:

логічна — модель подання знань, в основу якої покладено формальну логіку;

фрейм — модель подання знань, яка під час заповнення її елементів — слотів — певними значеннями перетворюється на опис конкретного факту, події, процесу;

семантична мережа — модель подання знань за допомогою мережі вузлів, сполучених дугами, де вузли відповідають поняттям чи об’єктам, а дуги — відношенням між вузлами;

продукційна система — система, в якій знання подано у вигляді сукупності продукцій та правил їх застосування. Правило продукції можна подати так: ЯКЩО ТОДІ .

Крім знань, здобутих від експертів, ЕС містить метазнання — знання про знання, що зберігаються в її базі знань, або про процедури, які можна здійснити з ними.

Можливість завантажувати базу знань та редагувати знання, які зібрані в базі, надає експертові блок нагромадження знань. Його функції охоплюють також формування емпіричних залежностей із неповних знань, тобто здобуття знань 1-го роду на основі знань 2-го роду. Але через складність реалізації цих функцій не всі ЕС містять такий блок.

Система керування базою знань — сукупність програмних та апаратних засобів для організації та ведення бази знань.

База цілей — компонент інтелектуальної системи, який містить інформацію про поведінку інтелектуальної системи в разі досягнення цілей у межах конкретної предметної галузі.

Розв’язувач задач — компонент інтелектуальної системи, призначений для формування на основі наявних знань логічних висновків, реалізація яких приводить до розв’язку задачі.

Інтелектуальний інтерфейс — сукупність програмних та апаратних засобів, які забезпечують взаємодію інтелектуальної системи з користувачем на основі звичних понять, термінів, образів, притаманних певній сфері інтелектуальної діяльності людини.

Система обґрунтування — компонент інтелектуальної системи, призначений для перевірки відповідності здобутого розв’язку знанням, що містяться в базі знань.

Система пояснення — компонент інтелектуальної системи, призначений для пояснення користувачеві способу, за допомогою якого знайдено розв’язок, а також самого розв’язку. Наявність цього блоку дає змогу використовувати ЕС не лише для прийняття рішень, а й як навчальну систему.

Система довіри — компонент інтелектуальної системи, призначений для підвищення рівня довіри користувача до здобутих результатів. Одним зі способів досягнення високої довіри може бути виправдання — функція обґрунтування деякого розв’язку із залученням наявних в інтелектуальній системі ціннісних чинників.

Використання систем штучного інтелекту в юридичній діяльності зумовлюється високим рівнем інтелектуальності, спеціалізації та професіоналізму, що притаманні розумовій діяльності юриста, судді, слідчого, криміналіста, судового експерта. Можна визначити такі напрями застосування інтелектуальних систем і технологій у галузі права: інтелектуалізація автоматизованих інформаційно-пошукових систем із законодавства; створення автоматизованих систем аналізу нормативних правових текстів; побудова консультативних систем із правотворення; створення експертних систем у сфері правозастосовної діяльності; розробка алгоритмів і програм ідентифікації за допомогою ЕОМ об’єктів при розслідуванні та розгляді судових справ (сфера криміналістики й судової експертизи).

Зарубіжні комерційні правові ЕС використовуються переважно в галузі управління фінансами. Наведемо кілька прикладів.

ЕС «DSCAS» допомагає аналізувати юридичні аспекти позовів щодо відшкодування додаткових витрат, пов’язаних з відмінностями фізичних умов на місці передбачуваного будівництва від зазначених у контракті. Такі позови ґрунтуються на даних, які містяться в конкретних договорах. ЕС забезпечує посадову особу правовими знаннями для прийняття рішення щодо позову.

ЕС «JUDITH» разом з юристом і з його слів засвоює фактичні та юридичні передумови цивільної справи, а далі пропонує розглянути різні варіанти підходів до її ведення.

ЕС «LEGAL ANALYSIS SYSTEM» допомагає адвокатам аналізувати справи про навмисну образу дією з погляду права і практики його застосування.

ЕС «LRS» надає допомогу стосовно добору й аналізу інформації про судові рішення та правові акти в галузі кредитно-грошового законодавства, пов’язаного з використанням векселів і чеків.

ЕС «TAXMAN» допомагає дослідити логіку міркувань та аргументацію на прикладі законодавства про оподаткування корпорацій.

ЕС «SAL» підтримує юристів при встановленні розмірів позовів, пов’язаних із професійними захворюваннями робітників, які працюють з азбестом.

ЕС «LDS» допомагає юристам урегульовувати проблеми позовів про відшкодування збитків і компенсації за шкоду, пов’язану з випуском дефектної продукції. Система на основі опису справи висуває версію про винність відповідача, визначає ціну позову, розмір компенсації, який забезпечує інтереси сторін.

На російське трудове законодавство зорієнтована експертна довідково-консультаційна система «Ущерб», призначена для юридичного аналізу ситуації притягнення робітників і службовців до матеріальної відповідальності в разі, коли підприємству завдано матеріальних збитків. Система дає змогу розглядати таке коло питань: можливість притягнення особи до відповідальності за збитки, завдані підприємству або організації; встановлення виду й розміру матеріальної відповідальності з огляду на обставини конкретної ситуації; визначення орієнтовного розміру збитків і порядку їх відшкодування. Така структура базується на формулі, згідно з якою, приступаючи до розгляду конкретної справи (ситуації) по суті, необхідно встановити характер правовідносин, які виникають, і виокремити основні критерії для їх оцінювання. Це дає змогу правильно визначити нормативні акти, до яких потрібно звернутися для правильного вирішення справи, і розглянути порядок їх застосування. ЕС «Ущерб» містить контекстно залежний довідник із законодавства, а також посилання на використану юридичну літературу. Система призначена для використання судами, органами прокуратури при проведенні загальнонаглядових перевірок, при дослідженні діяльності підприємств та їхніх посадових осіб юридичними службами, керівниками і радами трудових колективів установ та організацій, професійними спілками при вирішенні спорів з адміністрацією, а також у навчальних закладах, де вивчається курс права.

Окремою сферою застосування експертних систем є прийняття рішення про напрямок розслідування і виконання слідчих дій. Сутність криміналістичних досліджень зводиться до встановлення закономірності у зв’язках, що існують між фактом злочину, особистістю злочинця, місцем і способом здійснення злочину, особливостями злочинної поведінки.

ЕС, що застосовуються в роботі слідчого, ґрунтуються на збиранні, класифікації та використанні узагальненого досвіду розслідування у вигляді знань окремих професіоналів. Такі знання, виражені у формі правил типу «Якщо існує такий факт, то, ймовірно, відбулася така дія або існував такий мотив цієї дії», придатні для автоматизованого оброблення і дають змогу імітувати процес оцінювання слідчим ситуації розслідування та забезпечувати в режимі діалогу консультаційну підтримку прийняття ним рішень. Основними задачами, виконуваними за допомогою таких систем, є визначення можливих напрямків розслідування (формування версій про події з урахуванням, по змозі, різних джерел одержання інформації), вибір найбільш імовірних напрямків; надання користувачеві рекомендацій щодо подальших дій (призначення експертиз, проведення оперативно-пошукових заходів, перевірні та слідчі дії тощо).

Прикладом таких систем є «Маньяк» — ЕС підтримки прийняття рішень при розкритті серійних вбивств, здійснених на сексуальному ґрунті. Вона призначена допомагати співробітникам карного розшуку та слідчим прокуратури в розробці найбільш імовірної версії про тип можливого злочинця з обмеженням кола осіб, що підлягають перевірці на причетність до певного злочину. Основу системи становлять систематизовані взаємозв’язані набори найістотніших криміналістичних ознак, за якими виявляється зв’язок між подією злочину і вбивцею-маніяком. Використання системи сприяє збагаченню досвіду і знань працівників карного розшуку та слідчих прокуратури; установленню так званих прикордонних типів злочинців, розпізнати яких іншими методами надзвичайно важко або й зовсім неможливо; усуненню деякої частки суб’єктивізму під час формування версій за умов невизначеності; вирівнюванню знань неоднаково підготовлених співробітників.



РОЗДІЛ 2. ОСНОВИ ТЕЛЕКОМУНІКАЦІЙНИХ ТЕХНОЛОГІЙ РОЗДІЛ 2. ОСНОВИ ТЕЛЕКОМУНІКАЦІЙНИХ ТЕХНОЛОГІЙ 2.1. Основні поняття комп’ютерних мереж

Однією з базових вимог сучасності є вчасне забезпечення особи, яка приймає рішення, актуальною інформацією. Не в останню чергу це стало можливим завдяки тому, що називають тепер «другою комп’ютерною революцією» — поєднанню обчислювальних і комунікаційних технологій у рамках глобальної мережі з неосяжним обсягом і необмеженим потенціалом. Сьогодні термін «телекомунікації» (від грец. «tele» — далеко та «communico» — спілкуюся) позначає здатність передавати текст, голос, зображення і навіть нематеріальні активи (грошові кошти) через мережі разом із функціональною інформацією, призначеною для управління комп’ютерними системами.

Комп’ютерні мережі є одним з основних видів телекомунікацій. Комп’ютерна мережа — це сукупність каналів передавання даних і/або засобів комунікації, які з’єднують окремі ЕОМ і дають змогу використовувати спільні програмні й технічні засоби для організації зв’язку.

Основним призначенням комп’ютерних мереж є обмін даними; розподіл ресурсів — спільне використання обчислювальних потужностей (ресурсів процесора), периферійних пристроїв (принтерів, графопобудовників) та ін.; розподіл даних і програмних засобів.

Комп’ютерні мережі та мережі зв’язку

Комп’ютерні мережі є одним із видів мереж зв’язку. Закон України «Про зв’язок» містить таке визначення: мережа зв’язку — сукупність засобів та споруд зв’язку, поєднаних в єдиному технологічному процесі для забезпечення інформаційного обміну. При цьому розрізняються електричний зв’язок і поштовий зв’язок. Електричний зв’язок — це передавання, випромінювання чи прийом знаків, сигналів, письмового тексту, зображень і звуків або повідомлень будь-якого роду по радіо, проводових, оптичних або інших електромагнітних системах. Поштовий зв’язок — приймання, обробка, перевезення та доставляння письмових відправлень, матеріальних цінностей, виконання доручень фізичних та юридичних осіб щодо грошових переказів, банківських операцій.

Загалом мережні технології забезпечують скорочення витрат і підвищення продуктивності роботи, що є основним фактором їх поширення.

Існування та функціонування мереж визначається протоколами і стандартами. Протокол — це сукупність правил (визначень, домовленостей), які регламентують формат і процедури обміну інформацією між двома або більшою кількістю незалежних пристроїв чи процесів. Іншими словами, протокол — це опис того, як програми, комп’ютери або інші пристрої мають функціонувати у процесі взаємодії між собою — від порядку передавання бітів до формату повідомлень електронної пошти.

Створення протоколів диктується необхідністю організації повноцінної взаємодії технічних і програмних засобів різних вузлів мережі. З’єднати два комп’ютери кабелем — цього ще замало, аби забезпечити комунікації: кожен учасник зв’язку надсилатиме повідомлення, які не будуть зрозумілі одержувачам. Такий процес можна порівняти із засіданням, де немає головуючого і всі учасники говорять водночас, та до того ж різними мовами без перекладача. Із цього погляду, протокол, затверджений як стандарт, містить правила, дотримуватись яких неодмінно мають розробники мережного технічного та програмного забезпечення.

Роботи зі стандартизації провадять як національні, так і міжнародні організації. Серед найбільш впливових можна назвати такі: Міжнародна організація зі стандартизації (International Organization for Standardization, ISO), Міжнародний союз з телекомунікацій (International Telecommunication Union, ITU), Європейська асоціація виробників комп’ютерів (European Computer Manufactures Association, ECMA), Американський інститут національних стандартів (American National Standards Institute, ANSI), Інститут інженерів з електроніки і радіоелектроніки (Institute of Electronic and Electrical Engineers, IEEE).

З усвідомленням того, що передавання інформації між мережами різних країн матиме таке саме значення, як і з’єднання телефонних систем, Міжнародна організація зі стандартизації почала розробку еталонної моделі взаємодії відкритих систем (Open System Interconnection, OSI), яку сьогодні оформлено кількома стандартами. Модель OSI передбачає кілька рівнів, кожному з яких відводиться своя роль. Рівневе подання можна обґрунтувати за аналогією зі звичайним спілкуванням. Коли люди спілкуються, вони намагаються обмінятись ідеями. Якщо відправник А хоче передати повідомлення адресатові В, то він має перетворити ідею на слова, а згодом передати ці слова наявними засобами — поштою, за допомогою азбуки Морзе тощо. На цьому рівні ідея не істотна — важливо, які фізичні засоби можна застосувати для передавання символів. Отже, повідомлення проходить три рівні — когнітивний (рівень ідей), мовний (рівень слів) та фізичний. В адресата В проходження рівнів відбувається у зворотному порядку: він одержує лист, читає слова, а далі перетворює їх на ідею. Так само при передаванні даних через мережу повідомлення проходить сім рівнів: фізичний, канальний, мережний, транспортний, сеансовий, подання даних, прикладний. Рівні моделі OSI розроблено не повністю. Верхні три рівні реалізуються прикладними додатками й утворюють єдиний шар (його можна назвати логічним) над мережною інфраструктурою, яку утворюють нижні чотири рівні.

2.2. Класифікація комп’ютерних мереж

Сьогодні у світі налічуються сотні тисяч обчислювальних мереж. Загальноприйнятої стійкої класифікації мереж не існує, тому в цьому розділі розглянуто класифікацію за найважливішими й найчастіше використовуваними ознаками.

За розмірами розрізняють локальні та глобальні мережі. Локальна обчислювальна мережа (ЛОМ), як правило, зв’язує не більш ніж сотню вузлів в одній локальній зоні (не більш ніж кілька кілометрів). Глобальна мережа може охоплювати територію регіону, держави чи кількох країн, з’єднувати як окремі ЕОМ, так і локальні мережі. Проміжним класом є міські (муніципальні) мережі, зорієнтовані на географічні області невеликих розмірів. Відмінність між названими класами мереж полягає не тільки в розмірах охоплюваних ними територій, а й у швидкості передавання даних — технології, які забезпечують більші швидкості, працюють на менших відстанях. Існують і інші відмінності щодо використовуваного обладнання та принципів побудови мереж.

За типом з’єднуваних ЕОМ розрізняють однорідні (гомогенні, з однотипним складом технічних засобів) та неоднорідні (гетерогенні) мережі. Вузли ЛОМ здебільшого комплектуються однотипним апаратним i програмним забезпеченням, що практично неможливо забезпечити у глобальних мережах.

Доступ до комерційних мереж та послуги їхніх сервісних служб є платними. У некомерційних мережах («умовно безплатних») користувач платить тільки за підімкнення, експлуатацію системи зв’язку, використання мережних служб. Комерційні мережі підтримуються професійними організаціями, які існують з метою надання мережних послуг, а некомерційні, як правило, — навчальними закладами, інформаційними структурами та громадськими організаціями.

Якщо всі ЕОМ мережі мають однакову продуктивність і рівні права, мережа називається одноранговою. Однак у процесі нарощування мережі один або кілька комп’ютерів роблять більш потужними, їм надаються додаткові права — створюється мережа з виділеним сервером.

Проблема визначення рангів тісно пов’язана з вибором способу організації оброблення інформації. За цією ознакою мережі поділяються на централізовані, розподілені, із серверами.

У розподіленій мережі всі вузли виконують подібні між собою функції, причому кожний окремий вузол може використовувати ресурси інших вузлів і надавати у спільне використання свої ресурси. Такий підхід забезпечує оптимальність використання ресурсів, стійкість мережі до відказів (вихід із ладу одного вузла не призводить до фатальних наслідків — його легко можна замінити), але при цьому постають проблеми забезпечення розподілу ресурсів, безпеки та прозорості.

Централізовані мережі (із хост-машиною) складаються з особливо надійного й потужного центральною вузла та неінтелектуальних терміналів. На центральному вузлі здійснюється обробка даних, виконуються функції керування мережею (діагностування, збирання статистики і т. ін.), установлюється зв’язок з іншими мережами. Термінали називаються неінтелектуальними, оскільки вони позбавлені обчислювальних можливостей, на них виконуються тільки функції введення i виведення інформації та керування процесом її оброблення. Роль терміналів можуть виконувати персональні комп’ютери і навіть дисплейні станції. Нині централізовані мережі практично не застосовуються.

Проміжне місце між централізованими і розподіленими мережами посідають мережі із серверами. Сервер — це потужний комп’ютер, призначений для виконання певних завдань за допомогою відповідного ПЗ. Решта машин у мережі, які звертаються до послуг сервера, називаються клієнтськими (клієнтами), інша назва — робочі станції.

Залежно від виконуваних завдань розрізняють:

принт-сервер (сервер друку) — активний мережний пристрій (комп’ютер), який дає змогу підмикати кілька принтерів для створення єдиного вузла друку та сортування документів у разі великого документообігу. До різних портів принт-сервера можна підмикати лазерні, матричні, струменеві принтери, копіри;

файл-сервер (файловий сервер) — центральний вузол мережі, на якому зберігаються файли даних, доступні всім користувачам. Файл-сервер не бере участі у виконанні додатків — файл (або його частина) передається на робочу станцію, а після оброблення дані копіюються на файл-сервер. Він може не лише виконувати основні функції, а й бути засобом для спільного використання периферійних пристроїв. Мережі з файл-сервером мають два основні недоліки. По-перше, не забезпечується одночасний доступ кількох користувачів до одного набору даних (файл, з яким працює один користувач, блокується і стає недоступним для інших). По-друге, за великої кількості запитів до файл-сервера мережа швидко насичується і продуктивність системи різко знижується;

клієнт-сервер — це спосіб не стільки організації мережі, скільки логічного подання й обробки інформації, згідно з яким сервери виконують оброблення даних, а клієнтські машини — функції формування запитів, відображення результатів та їх обробки. Окремим випадком організації такого середовища є використання серверів баз даних, які мають таке призначення: управління єдиною базою даних і доступом до неї багатьох користувачів; захист бази даних за допомогою засобів відновлення та створення резервних копій; контроль за дотриманням правил глобальної цілісності даних. Оскільки клієнт і сервер працюють спільно і розподіляють завантаження (звідси термін «розподілена обробка»), така система може забезпечити більшу продуктивність порівняно з файл-серверною. До того ж клієнтська частина додатка працює не з цілими файлами, а з невеликими наборами даних (рядками таблиць), що забезпечує паралельність роботи користувачів і мінімальний мережний трафік. Перевагами таких систем є також гнучкість, адаптованість до вимог додатків, оптимальне використання ресурсів, нарощуваність.

Залежно від фізичного середовища передавання даних розрізняють мережі на основі витої пари, коаксіального кабелю, оптоволоконного кабелю, радіозв’язку, супутникового зв’язку.

За способом використання каналу передавання даних розрізняють мережі з комутацією каналів і мережі з комутацією пакетів. Комутація каналів — це процес з’єднання двох або більшої кількості станцій з монопольним використанням каналу до його роз’єднання. У разі комутації пакетів повідомлення розбивається на частини — пакети, канал зайнятий тільки на час пересилання окремого пакета, після чого звільняється для передавання інших пакетів.

Іншою важливою характеристикою мережі є її топологія — конфігурація з’єднання елементів. Від топології мережі багато в чому залежать такі її характеристики, як надійність, продуктивність і т. ін. Найпростішим способом організації мережі є безпосереднє з’єднання всіх вузлів, які мають взаємодіяти, за допомогою ліній зв’язку від пристрою до пристрою. Таку мережу називають повнозв’язаною. Але цей спосіб прийнятний тільки для небагатьох вузлів, оскільки має такі недоліки, як висока вартість і велика кількість каналів зв’язку. Тому основними видами топологій сучасних мереж є «зірка», кільцева, шинна, деревоподібна.

У мережі з топологією у вигляді зірки (рис. 2.1) центральний вузол (концентратор) має зв’язки з робочими станціями, не зв’язаними між собою безпосередньо. Уся інформація між периферійними робочими місцями проходить через центральний вузол. Пропускна здатність і продуктивність мережі визначаються потужністю центрального вузла, який є найбільш вразливим місцем мережі з погляду її надійності (з порушенням роботи центрального вузла припиняється функціонування всієї мережі). Кабельне з’єднання досить просте, але для його прокладання потрібні значні витрати, особливо коли центральний вузол географічно розміщений не в центрі топології.

У випадку кільцевої топології (див. рис. 2.1) кожен вузол мережі має зв’язок з двома і тільки з двома іншими вузлами — перша робоча станція зв’язана з другою, друга з третьою і т. д., остання робоча станція зв’язана з першою. Повідомлення передаються по колу — на основі аналізу адресної і керуючої інформації, розміщеної на початку повідомлення, станція приймає рішення щодо його подальшого передавання на сусідній вузол. Кільцеві мережі різняться за способом керування. Тривалість передавання інформації збільшується пропорційно кількості станцій мережі. Основними недоліками кільцевої топології є складність і висока вартість прокладки кабелю у випадку географічної віддаленості вузлів та їх розміщення не за колом, а також уразливість — вихід з ладу хоча б однієї станції паралізує всю мережу.

Якщо мережа не замкнена у коло, в ній є тільки два прикінцеві вузли і довільна кількість проміжних, а між будь-якими двома вузлами є лише один шлях, то таку мережу називають лінійною.

Шинна топологія (рис. 2.2) передбачає наявність комунікаційної лінії, доступної для всіх робочих станцій, які до неї підімкнено. Будь-яка станція мережі може вступати в контакт з будь-якою іншою станцією. Основними перевагами такої топології є простота розширення мережі (робочі станції можуть бути підімкнені або відімкнені від мережі в будь-який час без порушення її роботи), простота методів управління, відсутність необхідності в централізованому управлінні, мінімальні витрати кабелю, надійність (функціонування мережі не залежить від стану окремої робочої станції). Для підвищення надійності роботи мережі разом з основним кабелем прокладають запасний, на який станції перемикаються в разі несправності основного.

Окремо розглядають клас чарункових мереж, які містять принаймні два вузли, між якими є два чи більше шляхів.

Поряд із названими топологіями мереж застосовуються і комбіновані. Одним із прикладів є деревоподібна топологія (рис. 2.3), яку можна розглядати як розвиток шинної топології — за допомогою спеціальних пристроїв об’єднуються кілька шин — або топології типу «зірка» — один чи кілька термінальних вузлів можуть бути концентраторами іншої мережі.

Варто зазначити, що термін «топологія» застосовується здебільшого до ЛОМ — глобальні мережі будуються за довільними топологіями і найчастіше функціонують за специфічними протоколами.

Набори технічних засобів і правила їх з’єднання для організації мережі певної топології описано у відповідних стандартах. Таким чином регламентується припустима мережна архітектура — кабельна система мережі, кодування сигналів, швидкість передавання, формат мережних кадрів, топологія і метод доступу до каналу. Іншими словами, мережна архітектура визначає реалізацію фізичного і канального рівнів моделі OSI. Найпоширенішими архітектурами мереж є Ethernet та її модифікації, Token Ring (маркерне кільце), ARCnet, FDDI (інтерфейс передавання даних за оптоволоконними лініями) та її модифікації, ATM (технологія асинхронного передавання даних), ISDN (цифрова мережа з інтеграцією сервісу).

Мережі також можна класифікувати за операційними системами, які забезпечують їх функціонування. До найпоширеніших мережних операційних систем належать Microsoft Windows, Microsoft Windows NT, IBM OS/2 та UNIX-системи (BSD, LINUX та ін.).

Закони України «Про зв’язок» та «Про Національну систему конфіденційного зв’язку» визначають такі види мереж залежно від кола користувачів та призначення:

мережа зв’язку загального користування — мережа зв’язку, яку експлуатують підприємства та об’єднання зв’язку для забезпечення потреб у послугах зв’язку всіх споживачів;

мережа спеціального зв’язку (спеціальна мережа зв’язку) — мережа зв’язку, яка забезпечує обмін інформацією з обмеженим доступом;

відомча мережа зв’язку — мережа зв’язку, яку експлуатує юридична або фізична особа для задоволення власних потреб;

мережа технологічного зв’язку — відомча мережа зв’язку для обміну інформацією з метою забезпечення технологічних процесів у виробничій діяльності;

мережа зв’язку подвійного призначення — мережа зв’язку, яку експлуатує юридична або фізична особа для задоволення власних потреб та надання (на умовах ліцензування) послуг зв’язку всім споживачам;

спеціальна мережа зв’язку подвійного призначення — спеціальна мережа зв’язку, призначена для забезпечення зв’язку в інтересах органів державної влади та органів місцевого самоврядування, з використанням частини її ресурсу для надання послуг іншим споживачам;

Єдина національна система зв’язку — сукупність мереж зв’язку загального користування, відомчих та подвійного призначення, які забезпечують задоволення потреб споживачів (підприємств, установ, організацій, населення та ін.) у послугах зв’язку;

Державна система урядового зв’язку — система спеціального зв’язку, яка забезпечує передавання інформації, що містить державну таємницю, і функціонує в інтересах управління державою в мирний та воєнний час;

Національна система конфіденційного зв’язку — сукупність спеціальних систем (мереж) зв’язку подвійного призначення, які за допомогою криптографічних і/або технічних засобів забезпечують обмін конфіденційною інформацією в інтересах органів державної влади та органів місцевого самоврядування, створюють належні умови для їх взаємодії в мирний час та в разі впровадження надзвичайного і воєнного стану.


1   2   3   4


База даних захищена авторським правом ©shag.com.ua 2016
звернутися до адміністрації

    Головна сторінка