Генотип и среда в индивидуальном развитии



Скачати 480.85 Kb.
Сторінка2/3
Дата конвертації15.04.2016
Розмір480.85 Kb.
1   2   3

Дифференциация. Другой загадкой нейроэмбриогенеза являются процессы дифференциации нейронов. Как клетки с идентичным генным составом преобразуются в столь разнообразные формы, которые характерны для нейронов зрелого мозга? Во-первых, клетки нервной ткани дифференцируются на два крупных класса. Клетка становится либо нейрональной, либо глиальной. Внутри каждого из этих классов также идет дифференцировка, особенно характерная для нейронов. Нейроны отличаются по форме, по размерам, по характеру своих отростков и по нейротрансмиттерам, которые они используют (адренэргические, холинэргические). Причины возникновения этих различий до конца не поняты. Ясно только, что они включают как процессы взаимодействия клетки с ее окружением, так и дифференциальную активацию и подавление генов на определенных стадиях развития. Проходя последовательные стадии развития, нейрон приобретает свойства, которые могут влиять на прохождение последующих стадий. Скорее всего, решающие воздействия на окончательное формирование нейрона оказывают процессы взаимодействия с другими клетками. Например, нейротрансмиттерная специфичность нейронов в автономной нервной системе зависит от клеточного окружения. Вещества, продуцируемые теми тканями, которые иннервирует данный нейрон, способны изменять его специфичность. Например, вещества из клеток сердца побуждают нейрон становиться холинэргическим.

          Выживание и гибель. Для выживания нейронов, по-видимому, решающим является воздействие трофических факторов. К трофическим факторам относят вещества, продуцируемые другими клетками, которые способны поддерживать рост, функционирование и выживание данной клетки. Число нейронов, образующихся в результате митоза на ранних эмбриональных стадиях, примерно в два или три раза превышает то количество нейронов, которое выживает на более поздних стадиях. Естественная нейрональная гибель происходит вскоре за установлением афферентных и эфферентных связей с другими клетками. Предполагается, что естественная гибель нейронов происходит в процессе конкуренции за ограниченный ресурс трофических факторов, поставляемых теми тканями, с которыми нейроны устанавливают функциональные связи. Однако точная природа этой конкуренции пока неясна. Нейроны, которые успешно взаимодействуют с клетками-мишенями, получают необходимые трофические факторы, а остальные, которые не могут успешно взаимодействовать, отмирают. Идет своего рода естественный отбор. Наиболее известным из трофических факторов является фактор роста нервов (ФРН), который был описан Р. Леви-Монтальчини (Levi-Montalcini R.) в 1975 г. Оказалось, что слюнная железа мыши является превосходным источником ФРН, что позволило вести интенсивные исследования с его применением. ФРН продуцируется естественным путем внутри нервной системы и ее периферических мишеней. Некоторым популяциям нейронов ФРН требуется для выживания и роста. Инъекция ФРН в развивающийся эмбрион увеличивает выживаемость нейронов в период естественной гибели клеток.

          Образование связей. Аксоны и дендриты корковых нейронов начинают появляться намного раньше, чем устанавливаются все шесть слоев коры. В это же время формируются и первые синапсы. Так, предшественники пирамидных клеток посылают свои аксоны к соответствующим ядрам таламуса, а аксоны таламических нейронов растут по направлению к коре. Связь между корой и таламусом начинает формироваться реципрокно и синхронно еще до того, как образуются II и III слои. Главные пути связей в мозговой коре человека закладываются еще до рождения.
          Многие процессы, лежащие в основе миграции нейронов, имеют место и при образовании отростков нервных клеток - аксонов и дендритов. Аксоны и дендриты движутся по направлению к клеткам-мишеням, постепенно отрастая из тела клетки. Скорость роста может составлять 15-20 микрон в час. На ведущем конце нейрита (аксона или дендрита) имеется специальная структура, называемая конусом роста.

Впервые эта структура была описана С. Рамон-и-Кохалем в 1890 г. Конус роста реагирует на сигналы из экстраклеточной среды, в том числе на ФРН, который может привлекать конус роста, и некоторые адгезивные белки. Трофические факторы, получаемые из локальной клеточной среды, являются важными регуляторами процесса образования, роста и ветвления аксонов и дендритов. Обычно начальная стадия формирования нейрита отличается обильным ростом ответвлений, часть которых будет в дальнейшем элиминирована. Например, мозолистое тело - проводящий путь из одного полушария в другое - в неонатальный период испытывает значительную потерю аксонов, что связывается с реорганизацией паттерна проекций корковых нейронов в противоположное полушарие. Предполагается, что подобные реконструкции являются окончательным результатом клеточных взаимодействий. Может быть, связи, которые являются функциональными, остаются, а остальные исчезают. Однако имеется возможность для изменения паттерна связи в течение жизни.


          Как только конус роста достигает конечной цели, находит соответствующую клетку-мишень, например, мышечную, процессы роста тут же прекращаются, и конус роста превращается в нервное окончание, на котором постепенно формируется зрелый синапс. Каждая категория нервных клеток имеет свою категорию мишеней, которую распознают растущие нейриты, устанавливая связи только с клетками соответствующего типа. Таким образом, поведение конуса роста детерминировано, по-видимому, лишь немногими жестко запрограммированными правилами, включая амебоидные движения и узнавание своей мишени. Остальное определяется случайностями развития, что приводит к высокой вариабельности морфологии нервных отростков.
          Интересно, что этап онтогенеза, на который приходится воздействие трофического фактора, накладывает отпечаток на характер роста нервных окончаний. Например, число первичных дендритов, растущих прямо из тела нейрона, может быть увеличено подачей ФРН только в эмбриональный период, тогда как применение ФРН на более поздних стадиях ведет к росту ответвлений более высокого порядка и не меняет число первичных отростков. Таким образом, влияние трофических веществ на клетку зависит от степени дифференцированности клетки. Наиболее подвержены изменениям ветвления более высокого порядка, их длина, а также такие морфологические свойства, как число шипиков.
          Гормоны также могут оказывать трофические влияния на развивающиеся нейроны, которые имеют соответствующие рецепторы для этих гормонов. И наконец, что для нас особенно важно, стимуляция из внешней среды и обратная связь от поведения индивида могут иметь существенное влияние на формирование связей в нервной системе. Это означает, что изменения в протяженности и ветвлении дендритов, образовании синапсов и ветвлении аксонов испытывают влияния раннего опыта, то есть средовые влияния. Многие из этих влияний действенны во время позднего эмбрионального или раннего неонатального развития, но имеют место и в более поздние периоды онтогенеза.
          Таким образом, нервная система создается преимущественно в период эмбриональной жизни из клеток с одинаковым генетическим потенциалом, которые делятся, мигрируют, дифференцируются, образуют связи и выживают или погибают в период естественной гибели клеток. Нервная система способна перестраивать связи в течение жизни под влиянием опыта. Синапсы могут исчезать и появляться, а аксоны и дендриты способны образовывать и убирать свои отростки в течение своей жизни. Это является отражением пластичности нервной системы. Непрерывно происходящие структурные и функциональные изменения в нервной системе отражают события, происходящие в остальных частях организма и во внешней среде. В результате возникает адаптивное соответствие между нервной системой и другими частями организма, в особенности сенсорной и двигательной системами, через которые осуществляется взаимодействие с внешней средой.
          Поэтому и повреждения мозга, возникающие в ранние периоды онтогенеза, по всей видимости, вызывают изменения, принципиально отличные от тех, что имеют место у взрослых. И это отличие обусловлено не просто разным уровнем пластичности. Вероятнее всего, ответом на раннее повреждение может быть установление необычных нервных связей путем компенсаторного аксонального роста, разрастания дендритов и образования синапсов. В результате происходят изменения в функциональной и структурной организации оставшейся ткани. Происходит как бы формирование нового мозга, обладающего иной функциональной организацией.
          Небольшой экскурс в нейроэмбриологию показывает, что на каждом этапе развития и морфологические, и функциональные особенности организма являются результатом взаимодействия между множеством переменных. К ним относятся все типы генов, в том числе и регуляторные, различные физико-химические процессы, происходящие внутри организма, и внешние события, вызывающие целые каскады онтогенетических превращений. Невозможно понять отношения между организмом и теми причинами, благодаря которым он формируется, не привлекая теорию динамических систем, ибо развивающийся организм, безусловно, относится к системам этой категории. Для познания сложных и запутанных механизмов развития наиболее перспективными являются междисциплинарные исследования, объединяющие подходы таких наук, как генетика, нейрофизиология, эмбриология, биология и психология развития.

6. Роль эмбрионального и неонатального опыта в развитии поведения

Развитие является непрерывным процессом. В этом смысле рождение, то есть переход из внутриутробной среды во внеутробную, является лишь условной точкой отсчета, несмотря на всю радикальность такого события, как рождение. Непрерывность развития подтверждается тем, что неонатальное поведение младенца поначалу во многом напоминает поведение плода внутри матки. Так, поза новорожденного представляет собой продолжение той позы, которая была приобретена в матке в последний триместр беременности.



          Известно, что движения плода начинаются очень рано. Сердцебиения возникают примерно на 3-4 неделе после оплодотворения, первые спонтанные движения туловища и конечностей - на 10-й неделе, но мать начинает ощущать их примерно на семь недель позже. Какую же функциональную роль выполняют эти движения, полезны ли они для дальнейшей жизни или являются побочным продуктом развития двигательной системы? Контролируются ли они эндогенно или являются реакцией на стимуляцию? Результаты работ последних лет показывают, что некоторые особенности двигательной активности являются реакцией на специфику внутриутробной или ранней постнатальной среды. Оказалось, что плоды крыс способны отвечать на внешнюю стимуляцию, а нервная система плода способна перерабатывать тактильную и проприоцептивную сенсорную информацию. Следовательно, сенсорная обратная связь от движений, ограниченных маткой, может модифицировать нервную систему и управлять двигательной активностью. Учитывая чувствительность нервной системы к влиянию сенсорного опыта, можно предполагать, что ее модификация (через обратную связь) может вызывать изменения, сохраняющиеся и после рождения.
          Спонтанная активность плода человека является сложно организованной деятельностью, в которой представлены различные комплексы движений, однако окончательное значение ее не ясно. Например, у плодов часто наблюдается сопряженная активность головы и кисти и сосание большого пальца. Возможно, это облегчает постнатальную координацию этой деятельности, характерной для младенцев, находящихся в состоянии дискомфорта. Наблюдаются также эпизодические спонтанные дыхательные движения, которые могут быть важными для адекватной дифференциации ткани легких и правильной иннервации межреберных мышц. Известно, что у плодов крыс отклоняющиеся от нормы связи межреберных нервов с несоответствующими сегментами мышц элиминируются во внутриутробном периоде с началом дыхательных движений. Повторяющийся ток амниотической жидкости в легкие и обратно также важен для развития легких и респирации. Глотательные движения и заглатывание амниотической жидкости могут служить как для сиюминутных нужд плода (регулирование объема амниотической жидкости и ее вязкости, получение важных элементов питания, гормонов и иммунных факторов), а также быть подготовкой для перехода к заглатыванию молока и сосанию. Протекание жидкости через вкусовые и обонятельные рецепторы обеспечивает химические стимулы, которые могут играть важную роль в идентификации пищи.
          Плод млекопитающих, несомненно, отвечает на химические (вкус, обоняние), тактильные и слуховые стимулы и может запоминать пренатальный опыт. Например, у крыс в естественных условиях запах материнских сосков имеет общие элементы с запахом амниотической жидкости. Если в последние дни беременности в амниотическую жидкость впрыскивать пахучий цитраль, то новорожденные крысята предпочитают сосать из обработанных цитралью сосков матери. Детеныши, которые не подвергались такому внутриутробному опыту, избегают пахнущих цитралью сосков.
          Сенсорные системы развиваются в последовательности, которая является общей для всех позвоночных. Например, у крысы, которая рождается незрелой, еще до рождения начинают функционировать обоняние, вкус, температурная, тактильная и вестибулярная чувствительность. У человека все сенсорные системы обретают функциональный статус до рождения. Так, слуховая система плода примерно на 6-м месяце беременности уже имеет основные характерные черты взрослого организма. Тактильная рецепция складывается еще раньше. Спонтанная активность сенсорных систем возникает задолго до рождения. Единственная стимуляция, которая не достигает плода и не играет заметной роли в развитии - это зрительная.
          Интересны наблюдения за слуховым опытом плода. Слышание голоса матери является обычным ранним опытом плода. Голос матери легко проникает через ее ткани и амниотическую жидкость. К тому же он сопровождается кинестетической и тактильной стимуляцией плода в результате движений диафрагмы матери при разговоре. Таким образом, речь матери дает плоду слуховой опыт в сочетании с вестибулярной и тактильной стимуляцией. Плод особенно восприимчив к тоническим оттенкам речи матери, которые несут информацию и об эмоциональном состоянии. Именно благодаря этим характеристикам двухдневные младенцы способны узнавать голос матери. На слуховую систему плода воздействуют многие звуки, генерируемые матерью. Таким образом, мать обеспечивает плоду разнообразный слуховой опыт, который очень важен для появления многих когнитивных, эмоциональных и социальных способностей новорожденного.
          Было показано, что новорожденные способны дифференцировать взрывные согласные звуки речи, такие, как "д" и "т". Эта способность слишком сложна, чтобы происходить из пренатального или постнатального опыта, поэтому многие интерпретируют ее как свидетельство врожденных нервных механизмов, настроенных на акустические свойства речи.

          В целом исследования эмбриологии поведения демонстрируют, что многие поведенческие паттерны закладываются в эмбриональный период и имеют непосредственное отношение к событиям, связанным с внутриутробным опытом плода. Предполагается, что часть поведения плода является адаптацией к внутриутробным условиям, тогда как многие элементы поведения служат подготовительным этапом для дальнейшего развития (Michel G.F., Moore C.L., 1995). Например, регистрация ЭЭГ у плодов за несколько недель до рождения позволяет зафиксировать изменения, характерные для переходов от периодов бодрствования ко сну, причем в ЭЭГ сна уже отмечаются эпизоды интенсивной активности, характерные для парадоксального сна.


          Интересные наблюдения связаны с характерной для поврежденных асимметрией позы, которая включает предпочитаемое направление ориентации головы. В положении на спине новорожденный поворачивает голову в одну сторону (для большинства младенцев чаще вправо, чем влево). Рука и нога на той стороне, куда повернуто лицо, обычно разогнуты, тогда как другие рука и нога согнуты. Рука со стороны лица более активна - как по разнообразию, так и по частоте движений. Сдвиг вправо в предпочитаемом положении головы новорожденного создает латеральное смещение для визуализации руки и, следовательно, для действий этой рукой. Это латеральное смещение в сенсомоторном опыте рук предсказывает последующее предпочтение в использовании руки при контакте с предметами в период от 6 до 18 месяцев.
          Вообще вопрос о происхождении полушарной специализации функций и асимметрии рук постоянно дискутируется в нейропсихологии и генетике поведения. Имеются гипотезы о наследственной природе этих асимметрий. Например, в соответствии с гипотезой М. Аннет (1978) феномен предпочтения руки у человека объясняется действием как генов, так и случайных факторов в развитии, при этом отчетливый сдвиг в сторону правшей в популяции в целом объясняется действием одного гена, который М. Аннетт называет геном правого сдвига.
          Однако, как показывают последние наблюдения, события раннего опыта, по-видимому, могут играть немаловажную роль в возникновении полушарной специализации функций. Ф. Превик (1991, цит. по: Michel G.F., Moore C.L., 1995) предполагает, что пренатальный вестибулярный опыт плода может оказывать влияние на возникновение неонатальной асимметрии позы. Известно, что положение плода меняется в течение беременности, но асимметричный характер человеческой матки в комбинации со специфической гравитацией плода создают условия, результатом которых будет положение плода, которое является более вероятным, чем все остальные (инвертированный плод со спиной, повернутой к левой стороне матери). При этом обычное движение матери вперед будет создавать асимметричный вестибулярный опыт для плода, поскольку это движение будет по-разному сказываться на левом и правом отолитических органах плода. Результатом асимметрии в стимуляции может быть большая чувствительность левого отолитического органа, чем правого. Поскольку левый отолитический орган имеет проекцию в правое полушарие, он обеспечивает правому полушарию активацию, отличную от левого. Активация левого органа может иметь результатом моторную активацию мышц, которые поворачивают голову вправо и изгибают туловище. Это вносит вклад в появление асимметрии неонатальной позы, что, в свою очередь, влияет на развитие асимметрии в использовании руки у младенца.
          Вестибулярная система - одна из наиболее рано развивающихся сенсорных систем, и она является активной во время развития плода. Возможно, асимметричная активация этой системы создает предпосылки для возникновения различных функциональных асимметрий у человека. Поскольку для животных не характерно прямохождение, этот феномен у них не наблюдается. Ф. Превик отмечает также, что полушария отличаются и по характеру преобладающих нейротрансмиттеров в некоторых структурах: если для правого полушария, по всей видимости, более характерна норадренергическая и серотонинергическая иннервация, то для левого - допаминергическая и холинергическая. Возможно, асимметрия вестибулярного опыта ответственна и за асимметрию в этих главных нейротрансмиттерах.
          Таким образом, еще очень мало известно о влиянии самого раннего опыта, связанного с эмбриональным и неонатальным периодами жизни, однако некоторые наблюдения свидетельствуют о том, что множество средовых факторов могут накладывать отпечаток на формирование нервной системы и развитие поведения.


7. Родительские эффекты в развитии

Образование гамет, оплодотворение и эмбриональное развитие у млекопитающих происходят внутри организма родителей, поэтому мы вправе задать вопрос, не влияет ли физиологическое состояние родителей на эти процессы. Особенно важно для развития организма состояние всех физиологических систем матери.


          В целом можно сказать, что генотип ребенка (то есть состав генов) не испытывает влияния таких факторов, как возраст, количество предыдущих родов или состояние здоровья родителей. Нормальные процессы мейоза, сопровождающиеся рекомбинацией хромосом, по-видимому, не зависят от состояния организма родителей. Наиболее чувствительными к физиологическому состоянию родителей являются два генетических процесса - это мутации и кроссинговер. Не будем подробно останавливаться на мутационном процессе, поскольку это особая область генетики. Отметим лишь, что существуют различные мутагенные факторы (радиация, химические агенты), и, если они имели место в период гаметогенеза, оплодотворения и эмбрионального развития, могут возникать различные аномалии, причиной которых являются произошедшие мутации.
          Что же влияет на кроссинговер? Эксперименты на животных показывают, что частота кроссинговера зависит от возраста и состояния процессов метаболизма родителей. Если будет доказано то же самое для человека, то это означает, что дети, рожденные в периоды низкой частоты кроссинговера, должны иметь большее количество сцепленных блоков аллелей, доставшихся им с хромосомой одного из прародителей (дедушки или бабушки), тогда как в периоды более высокой частоты кроссинговера они будут нести смешанные признаки обоих прародителей, поскольку их хромосомы будут содержать участки, происходящие и от дедушки, и от бабушки.
          Не так давно в генетике было открыто явление, получившее название генетического импринтинга. Термин, возможно, не совсем удачный, так как он никакого отношения к поведенческому явлению импринтинга не имеет. Генетический импринтинг проявляется в разной экспрессии одного и того же гена в зависимости от того, получен ли этот ген от отца (через спермин) или от матери (через яйцеклетку). Если получить мышиный эмбрион, все хромосомы которого происходят от родителя одного пола, то оказывается, что возникают два типа аномалий в развитии. Если все хромосомы получены от отца, то возникают аномалии самого эмбриона; если все хромосомы получены от матери, то возникают нарушения в развитии плаценты. Типичным примером генетического импринтинга является время начала заболевания при хорее Гентингтона: если патологический аллель передан отцом, симптомы болезни появляются в юности, а если матерью, то не ранее 40 лет. Таким образом, гены, находящиеся в хромосомах, как бы несут на себе печать своего происхождения (из яйцеклетки или из сперматозоида), и для нормального развития нужны не просто нормальные гены, а обязательно гены, полученные от каждого из родителей.
          Механизм генетического импринтинга неясен. По-видимому, в процессе образования гамет происходит модификация генов, которая идет по-разному при гаметогенезе яйцеклеток и спермы. Геном, идущий от самки, будет иметь гены, модифицированные по паттерну яйцеклетки, а геном, идущий от самца, соответственно, по паттерну сперматозоида. Интересно, что эти модификации не передаются через поколения. Это означает, что все гены в гаметах самки, например, будут модифицированы по типу яйцеклетки независимо от того, в какой хромосоме они находятся - той, что унаследована от дедушки или той, что - от бабушки.

          Материнский эффект. Особое место в родительских влияниях на развитие занимает так называемый материнский эффект. Влияние матери на фенотип потомства обнаруживается гораздо чаще, чем влияние отца. Эти влияния связаны с цитоплазматическими эффектами яйцеклетки, внутриутробными событиями и постнатальными влияниями, связанными со вскармливанием и уходом за потомством.


          Все три типа влияний могут изучаться в экспериментах на животных. Чтобы отделить влияния внутриутробной среды от влияния яйцеклетки, самкам одной инбредной линии мышей или крыс до спаривания делается пересадка яйцеклетки от самок другой инбредной линии. Чтобы изучать влияние постнатальной материнской среды, обычно потомство одной самки передается для вскармливания и воспитания другой. Таким образом, путем комбинации различных ситуаций можно выяснить эффект каждого из трех типов материнских влияний. В экспериментах на мышах, например, было показано, что особенности постнатальных материнских влияний способны снижать агрессивность самцов, происходящих из генетически более агрессивной линии. В этих же экспериментах было выявлено, что на агрессивность в той или иной мере влияют все материнские факторы. Таким образом, один и тот же ген имеет разное фенотипическое проявление в поведении в зависимости от условий развития, определяемых материнскими факторами.
          Еще одно интересное наблюдение касается так называемого хэндлинга. Когда изучается влияние раннего опыта на поведение животных, часто используют процедуру хэндлинга. Она заключается в том, что детенышей мышей и крыс в течение первых трех недель после рождения регулярно берут в руки. Оказалось, что такие животные, будучи взрослыми, проявляют большую любознательность и эмоциональность, чем интактные, не получавшие хэндлинга, даже если хэндлинг ограничивался трехминутными эпизодами. Первоначально считалось, что изменение поведения животных является прямым следствием хэндлинга, однако последующие наблюдения за взаимоотношениями животных, подвергавшихся хэндлингу, с их матерями показало, что после хэндлинга и у мышей, и у крыс матери гораздо больше "тормошили" своих детенышей по сравнению с теми, которые хэндлингу не подвергались, так что изменения в поведении могли возникнуть и за счет изменений, возникших в поведении матерей экспериментальной группы.
          Интересны также наблюдения за развитием недоношенных детей, которых после рождения помещали в инкубатор. Оказалось, что дети, которых время от времени встряхивали и тормошили, быстрее набирали вес и были выписаны из больницы раньше контрольных.
          У человека, как и у других млекопитающих, тесная физиологическая близость матери и ребенка возникает в момент зачатия и сохраняется вплоть до отнятия от груди. При этом не только ребенок испытывает влияния со стороны физиологического и психического состояния матери, но и в организме и поведении матери происходят ответные изменения, связанные с вынашиванием, рождением, вскармливанием и воспитанием ребенка. Говорят, что мать и дитя находятся в реципрокных отношениях.
          Через мать осуществляется регуляция среды плода и новорожденного, которая обеспечивает поддержание систем гомеостаза. Внутриутробная среда поддерживает уровни температуры, кислорода, воды, электролитов и питательных веществ. После рождения наиболее универсальным регулирующим веществом является молоко матери, которое поставляет организму ребенка питательные вещества, электролиты, воду, гормоны и иммунные факторы.
          Помимо вскармливания, с материнским уходом связаны и другие регуляторные процессы. В первые же дни после рождения в результате реципрокных отношений у матери и ребенка устанавливается специфический режим взаимодействия. Мать и дитя приспосабливаются друг к другу. Такое установление взаимовлияний происходит уже в первые две недели жизни ребенка. Те дети, которые после рождения попадают в больничные условия (особенно если они находятся в инкубаторе, и матери не позволяется ухаживать за ребенком), в этот период не имеют тесных контактов с матерью, что неблагоприятно сказывается на их психическом развитии. Этого не происходит в тех случаях, когда мать допускается к уходу за ребенком.
          Интересны данные, полученные недавно в нашей стране на младенцах со зрительной депривацией в результате врожденной катаракты. Оказалось, что первые месяцы жизни являются критическими, когда весь комплекс взаимодействия с матерью имеет принципиально важное значение для дальнейшего развития эмоционального и социального поведения ребенка. Исключение из этого комплекса зрительного входа (улыбка матери, выражение ее лица при общении) в первое полугодие жизни, несмотря на то, что сохраняются слуховые и тактильные контакты, приводит в дальнейшем к необратимым изменениям в эмоциональном и социальном поведении ребенка, даже если катаракта снимается на первом году жизни (в среднем, в шесть-восемь месяцев), и ребенок начинает видеть. По-видимому, в первые месяцы жизни, существует критический период для формирования каких-то базовых характеристик, обеспечивающих в дальнейшем эмоциональное и социальное благополучие ребенка. Зрительная депривация в этом периоде приводит к необратимым изменениям в психике ребенка.         

 Таким образом, ранние реципрокные взаимодействия матери и ребенка имеют принципиальное значение для адекватного психологического развития ребенка.



          Межпоколенные влияния. Вообще системы родительской заботы на ранних этапах развития имеют некоторые стабильные особенности, которые формируют часть негенетической наследственности потомства. Некоторые из них являются видоспецифическими, другие присущи отдельным семьям (традиции, передаваемые из поколения в поколение). Например, молодые самцы снегиря, находясь в гнезде, перенимают пение того самца, который принимает участие в воспитании потомства (даже если это представитель другого вида, например, кенарь), и далее передают его своим потомкам. В результате можно получить несколько поколений снегирей, которые поют, как кенари.
          Существуют специфические влияния, связанные с гормональными сдвигами, которые прослеживаются между поколениями. Эти влияния возникают благодаря системе материнских гормонов, которые проникают через плацентарный барьер и оказывают воздействие на развивающийся плод.
          У человека социальные средовые факторы, которые приводят к возникновению стресса, бурно переживаемых эмоций, фрустрации, могут влиять на эндокринную систему матери и приводить к изменению пропорций определенных гормонов. Многие из этих гормонов могут проникать через плацентарный барьер в кровеносную систему плода и влиять на нервную и нейроэндокринную систему плода. В результате поведение новорожденного и его дальнейшее развитие могут отражать последствия тех социальных средовых влияний, которые испытывала мать в период беременности. Влияние пренатального стресса интенсивно исследуется на животных. Результаты этих исследований показывают, что ранний средовой стрессор может влиять не только на поведение взрослой самки, но оказывать воздействие и на дочерей.
          Кроме эмоционального стресса, также довольно интенсивно исследуется влияние недостаточного питания матери на развитие плода. В исследованиях Х. Бирча было показано, что не только недостаточное питание матери во время беременности неблагоприятно сказывается на развитии ребенка, но и недостаточное питание самой матери в раннем детстве вызывает в ее организме необратимые сдвиги, которые в дальнейшем отрицательно отражаются на течении беременности и развитии ребенка, даже если будучи взрослой и при вынашивании ребенка мать питалась нормально.
          Описанный эффект был обнаружен Х. Бирчем в исследовании влияния социоэкономического статуса и расы на состояние младенцев при рождении (вес при рождении, смертность, заболеваемость). Ожидалось, что особенности младенцев будут коррелировать с социоэкономическим статусом матери, от которого зависит качество питания и медицинского обслуживания, получаемого матерью в период беременности. Вопреки ожиданию, состояние детей коррелировало не с социоэкономическим статусом матери, а с ее расой. Дети матерей негритянского происхождения, принадлежавших к среднему классу, демонстрировали более низкие показатели, чем дети белых матерей из того же класса. Состояние новорожденных у негритянских матерей среднего класса оказалось не лучше, чем состояние новорожденных у белых матерей, принадлежавших к низшему социальному классу. Результаты вызвали недоумение. Тогда Х. Бирч решил разделить негритянских матерей на две группы - тех, которые родились в условиях, характерных для жизни среднего класса, и тех, которые родились у родителей низшего класса и лишь затем волей обстоятельств стали принадлежать к среднему классу. Действительно, такое разделение привело к ожидаемым корреляциям состояния новорожденных с социоэкономическим статусом матерей. Таким образом, более существенным оказался социоэкономический статус матерей не в момент их беременности, а в момент их рождения. Это говорит о том, что пренатальный и ранний неонатальный опыт самой матери приводит к каким-то необратимым изменениям, которые затем сказываются в следующем поколении.
          Таким образом, есть основания полагать, что стрессогенные факторы и недостаточное питание в пренатальный и постнатальный период могут отрицательным образом сказываться на развитии ребенка, и если это девочка, то необратимые изменения, происходящие в организме в период раннего онтогенеза, могут неблагоприятным образом повлиять на ее потомство, даже если в последующие периоды жизни среда будет благополучной.
1   2   3


База даних захищена авторським правом ©shag.com.ua 2016
звернутися до адміністрації

    Головна сторінка